Java高并发实战:构建智能风控实时计算引擎
一、系统架构设计
事件采集 + 规则链 + 实时计算 + 动态决策
二、核心功能实现
1. 规则引擎设计
public interface RiskRule { String getRuleId(); boolean evaluate(RiskContext context); RiskAction execute(RiskContext context); } public class FrequencyRule implements RiskRule { private final String ruleId; private final int maxCount; private final Duration duration; public FrequencyRule(String ruleId, int maxCount, Duration duration) { this.ruleId = ruleId; this.maxCount = maxCount; this.duration = duration; } @Override public boolean evaluate(RiskContext context) { long count = context.getEventStore() .queryEvents(context.getUserId(), Instant.now().minus(duration), Instant.now()) .stream() .filter(e -> e.getEventType().equals(context.getEventType())) .count(); return count >= maxCount; } @Override public RiskAction execute(RiskContext context) { return new RiskAction(ruleId, "FREQUENCY_LIMIT", "操作过于频繁"); } }
2. 规则链处理器
public class RuleChain { private final List<RiskRule> rules; private final ExecutorService executor; public RuleChain(List<RiskRule> rules) { this.rules = rules; this.executor = Executors.newWorkStealingPool(); } public CompletableFuture<RiskResult> executeAsync(RiskContext context) { List<CompletableFuture<RiskAction>> futures = rules.stream() .map(rule -> CompletableFuture.supplyAsync( () -> rule.evaluate(context) ? rule.execute(context) : null, executor)) .collect(Collectors.toList()); return CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])) .thenApply(v -> { List<RiskAction> actions = futures.stream() .map(CompletableFuture::join) .filter(Objects::nonNull) .collect(Collectors.toList()); return new RiskResult(context, actions); }); } }
3. 复杂事件处理
public class ComplexEventProcessor { private final Map<String, List<EventPattern>> patterns; private final EventWindowManager windowManager; public ComplexEventProcessor() { this.patterns = loadPatterns(); this.windowManager = new EventWindowManager(); } public RiskResult detectPatterns(RiskContext context) { List<RiskAction> actions = new ArrayList<>(); List<EventPattern> matchedPatterns = patterns.get(context.getEventType()); if (matchedPatterns != null) { matchedPatterns.forEach(pattern -> { if (windowManager.matchPattern(context.getUserId(), pattern)) { actions.add(new RiskAction( pattern.getPatternId(), "COMPLEX_PATTERN", pattern.getDescription() )); } }); } return new RiskResult(context, actions); } private Map<String, List<EventPattern>> loadPatterns() { // 从数据库或配置加载事件模式 } }
三、高级功能实现
1. 动态规则加载
public class DynamicRuleManager { private final ScheduledExecutorService scheduler; private final RuleRepository ruleRepository; private volatile RuleChain currentChain; public DynamicRuleManager(RuleRepository ruleRepository) { this.ruleRepository = ruleRepository; this.scheduler = Executors.newSingleThreadScheduledExecutor(); this.currentChain = buildChain(ruleRepository.loadAllRules()); startRefreshTask(); } private void startRefreshTask() { scheduler.scheduleAtFixedRate(() -> { List<RuleDefinition> newRules = ruleRepository.loadChangedRules(); if (!newRules.isEmpty()) { currentChain = buildChain(newRules); } }, 1, 1, TimeUnit.MINUTES); } public RuleChain getCurrentChain() { return currentChain; } }
2. 性能优化方案
- 事件缓存:Guava Cache实现事件本地缓存
- 并行计算:规则评估并行执行
- JIT编译:热点规则动态编译
- 内存池:事件对象复用
四、实战案例演示
1. 风控服务集成
@RestController @RequestMapping("/risk") public class RiskController { private final RuleChain ruleChain; private final ComplexEventProcessor eventProcessor; public RiskController(RuleChain ruleChain, ComplexEventProcessor eventProcessor) { this.ruleChain = ruleChain; this.eventProcessor = eventProcessor; } @PostMapping("/check") public CompletableFuture<RiskResponse> checkRisk(@RequestBody RiskRequest request) { RiskContext context = buildContext(request); return ruleChain.executeAsync(context) .thenCombineAsync( CompletableFuture.supplyAsync(() -> eventProcessor.detectPatterns(context)), this::mergeResults ) .thenApply(this::buildResponse); } }
2. 性能测试数据
测试场景:1000TPS压力测试 平均响应时间:28ms 规则处理吞吐量:3500条/秒 CPU使用率:65% 内存占用:1.2GB 动态规则加载延迟:<200ms