Python异步编程实战:基于Asyncio的高并发爬虫系统开发

2025-08-02 0 239

Python异步编程实战:基于Asyncio的高并发爬虫系统开发

一、异步爬虫架构设计

系统核心组件:

  • 异步HTTP客户端:aiohttp库实现
  • 任务调度器:Asyncio协程管理
  • 数据管道:异步存储到MongoDB
  • 反爬策略:自动代理轮换+请求限流
  • 监控系统:实时统计爬取指标

二、核心代码实现

1. 异步爬虫主引擎

import asyncio
from aiohttp import ClientSession
from motor.motor_asyncio import AsyncIOMotorClient

class AsyncSpider:
    def __init__(self, concurrency=10):
        self.semaphore = asyncio.Semaphore(concurrency)
        self.client = AsyncIOMotorClient('mongodb://localhost:27017')
        self.db = self.client['spider_db']
        
    async def fetch(self, url, session):
        async with self.semaphore:
            try:
                async with session.get(url, timeout=10) as response:
                    if response.status == 200:
                        return await response.text()
            except Exception as e:
                print(f"Error fetching {url}: {str(e)}")
                return None

    async def parse(self, html):
        # 实现具体的解析逻辑
        pass

    async def save(self, data):
        await self.db['items'].insert_one(data)

    async def crawl(self, urls):
        async with ClientSession() as session:
            tasks = [self.process_url(url, session) for url in urls]
            await asyncio.gather(*tasks)

    async def process_url(self, url, session):
        html = await self.fetch(url, session)
        if html:
            data = await self.parse(html)
            if data:
                await self.save(data)

2. 代理中间件实现

class ProxyMiddleware:
    def __init__(self):
        self.proxies = [
            'http://proxy1.example.com:8080',
            'http://proxy2.example.com:8080'
        ]
        self.current = 0

    async def get_proxy(self):
        proxy = self.proxies[self.current]
        self.current = (self.current + 1) % len(self.proxies)
        return proxy

    async def process_request(self, url, session):
        proxy = await self.get_proxy()
        try:
            async with session.get(url, proxy=proxy) as response:
                return await response.text()
        except:
            return None

三、高级功能实现

1. 分布式任务队列

import aioredis

class TaskQueue:
    def __init__(self):
        self.redis = aioredis.from_url('redis://localhost')

    async def add_url(self, url):
        await self.redis.lpush('spider:start_urls', url)

    async def get_url(self):
        return await self.redis.rpop('spider:start_urls')

    async def process_tasks(self):
        while True:
            url = await self.get_url()
            if url:
                await self.spider.crawl([url])
            else:
                await asyncio.sleep(1)

2. 性能监控装饰器

def monitor_performance(func):
    async def wrapper(*args, **kwargs):
        start = time.time()
        result = await func(*args, **kwargs)
        elapsed = time.time() - start
        print(f"{func.__name__} executed in {elapsed:.2f} seconds")
        return result
    return wrapper

四、项目部署方案

  1. Docker容器化:打包Python环境和依赖
  2. Kubernetes编排:实现自动扩缩容
  3. Prometheus监控:收集运行时指标
  4. 日志收集:ELK栈集中管理
  5. 定时任务:Celery实现周期爬取
Python异步编程实战:基于Asyncio的高并发爬虫系统开发
收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

淘吗网 php Python异步编程实战:基于Asyncio的高并发爬虫系统开发 https://www.taomawang.com/server/php/726.html

常见问题

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务